

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Web APIs

The search page and the text viewer on the website
are built on top of web APIs which are
publicly accessible. The APIs responses follow the
json:api [https://jsonapi.org/] 1.0 specification.

The Text Viewing part of the API is defined as an OpenAPI 3 specification
and is documented separately [https://kingsdigitallab.github.io/cotr/apis/docs/index.html].
They were generated from the json response respectively with
Swagger Generator [https://roger13.github.io/SwagDefGen/]
PyCharm OpenAPI plugin (html2 documentation).

The addresses below are prefixed with the domain the live COTR website:
https://cotr.ac.uk

The API endpoints are implemented in the ctrs_texts app [https://github.com/kingsdigitallab/cotr/blob/master/cotr/ctrs_texts/views/texts_json.py]
of the Django project in this repository.

List of texts

The following request returns a list of all the texts for a given work.

group is a code for the work, ‘declaration’ or ‘regiam’.

https://cotr.ac.uk/api/texts/?&group=declaration

The type of a text is either: manuscript, version or work.

Text content

The following request returns the content of a given text.

Replace 23 with the id of the desired text as returned by the previous
web API call. Use ‘transcription’ for the Latin edition and ‘translation’
for the English translation. /whole/whole is just a fixed convention.

https://cotr.ac.uk/api/texts/23/transcription/whole/whole/

TEI format

To export a text in TEI, add ?format=tei to the end of the link.

https://cotr.ac.uk/api/texts/23/transcription/whole/whole/?format=tei

Sentences matching a keyword

The following request returns the 2nd page of the results containing
the sentence with keyword ‘rege’ from the Latin (transcription) text
with the given IDs in the Declaration.

https://cotr.ac.uk/api/texts/search/text/?group=declaration&page=2&rt=text&et=transcription&q=rege&texts=44,35,37,40,38,7,4,20,6,9,36,3,1,50,21,2,8,22,23,51,12,13,10,11,14,5

Sentences matching a number

The following request returns the 2nd page of the results containing
the 4th sentence from the Latin (transcription) text with the given IDs
in the Declaration.

https://cotr.ac.uk/api/texts/search/sentences/?group=declaration&page=2&rt=sentences&sn=4&et=transcription&q=&texts=44,35,37,40,38,7,4,20,6,9,36,3,1,50,21,2,8,22,23,51,12,13,10,11,14,5

Unsettled regions

The following request returns the unsettled regions found in the texts
with the given IDs.

https://cotr.ac.uk/api/texts/search/regions/?group=declaration&page=1&rt=regions&sn=4&et=transcription&q=rege&texts=44,35

Each region has one or more readings and one or two rectangles that bound the
region on the manuscript image.

Research Software documentation of COTR

This page contains a high-level documentation of the research software analysed,
designed and developed by King’s Digital Lab (KDL) [https://kdl.kcl.ac.uk]
for the The Community of the Realm in Scotland, 1249-1424: history, law and charters in a recreated kingdom (COTR) [https://cotr.ac.uk/]
research project.

Please refer to the Guideline section on the COTR website [https://cotr.ac.uk/guidelines/]
for the historical and research perspective on the project and ways to cite our work.

KDL team: Paul Caton, Ginestra Ferraro, Brian Maher, Geoffroy Noël, Miguel Vieira.

UML Model

All Unified Modeling Language (UML) diagrams below were drawn with Modelio [https://www.modelio.org/]
you can download the complete model and diagrams in a single Modelio zip file
or download the model in XMI format: UML 2.1,
UML 2.4 or UML-EMF 3.0.
Note that although the XMI format is standard but isn’t rarely well exchanged among UML editors.
Also note that XMI files don’t contain the diagrams..

Editorial Workflow

UML Use case diagram:

[image: _images/ctrs-use-case-diagram.png]UML Use Case Diagram

The complete workflow spans across two systems:

	a private COTR instance of the Archetype framework [https://github.com/kingsdigitallab/ctrs-archetype] with a customised text editor and review system [https://github.com/kingsdigitallab/ctrs-archetype/wiki/Editing-the-texts-with-Archetype] for the unsettled regions

	the public project website as described in the System Architecture section

Workflow steps generally occurred in the following order: from top-left corner going down then moving to the top right corner and going down.
Note that the workflow isn’t strictly linear, reviewing steps obviously lead to corrections up the editorial chain.
Moreover some versions were edited first and published before others.

Since KDL works in an agile fashion, the steps were developed, tested and used incrementally
and iteratively. This allowed us to give the researchers a working environment they can
work on before it was fully functional. Indeed, our encoding model for the unsettled regions
came quite late as we needed some draft manuscript and version XMLs to help us
analyse those specific requirements and design an encoding schema that works well across both system
and isn’t too complicated for the editors.

The manuscripts metadata were imported into Archetype by a python script
from an Excel spreadsheet provided by the research team.
Further cataloguing was done using the existing backend environment within Archetype.

The conversion of the content from Archetype to the Public system is automated thanks
to the Archetype Data API.

The adoption of Archetype helped us save a lot of development time and focus
directly on additional features such as the text encoding and the synchronisation
of the regions across the various texts. Three of the research partners were already
familiar with the framework through their participation in the
Models of Authority [http://www.modelsofauthority.ac.uk/] project (developed by DDH).

However, given that Archetype is a legacy application built on an obsolete software stack
this customised instance cannot be maintained much longer beyond the end of this project.
It will be taken down, packaged up as a docker instance for archival on github.
At which point the editions on the live website are considered final.

Data Model

The conceptual data model [https://cotr.ac.uk/guidelines/dynamic-edition-key-concepts/] was created by Paul Caton in collaboration with the research team.

This was later adapted into a logical model by Geoffroy Noel
to facilitate our implementation
in Django ORM [https://docs.djangoproject.com/en/3.1/topics/db/models/]
and the derived database schema.

UML Class diagram:

[image: _images/ctrs-class-diagram.png]UML Class Diagram

The main difference with the conceptual model is the generalisation of the concept of group.
In COTR a version represents of group of texts abstracted from a manuscripts.
Here we consider a work as group of versions. We thus have a hierarchy of groups:
manuscripts into version, versions into work.
This is modeled by the recursive association (grouped into) from AbstractedText to itself
and the AbstractedTextType class which represents the level in the grouping hierarchy:
“manuscript”, “version” or “work”.
Only an AbstractedText of type “manuscript” can be linked to a Manuscript instance and has a “locus”.
Versions and Work obviously cannot be located into a single physical document.

There are actually two dimensions of abstractions:

	the interpretive extraction of the handwritten content from the manuscript (which abstracts other aspects of the Manuscripts [https://epierazzo.blogspot.com/2013/] (e.g. codicology) as well as the exact form of the written text (e.g. abbreviations, spelling))

	the grouping that implies an ideal text from a multiplicity of members (which abstracts singular readings - encoded with a special symbol ⊕ [https://cotr.ac.uk/guidelines/dynamic-text/version-v-text/])

Since each AbstractedText is edited in Latin and in English by the researchers,
we have also generalised that aspect into the EncodedText class.
The class represents a single edition of an AbstractedText
and its attribute Content holds the text marked-up as XML (see Encoding section below).
EncodedTextType specifies the type of edition: “transcription” or “translation”.
EncodedTextStatus represents the editorial status of the EncodedText: “draft”, “public”.
Only editions marked as “public” are visible on the public website.

Technical note

NamedModel is a special class, each class connected to it inherits from its attributes:

	Name: a fully descriptive label that can be displayed on screen

	Short Name: a shorthand (e.g. a siglum, or an abbreviated form)

	Slug: an memorable identifier [https://developer.mozilla.org/en-US/docs/Glossary/Slug]

For instance an AbstractedText could have the following attributes:

	Name: Edinburgh, NLS, MS Adv. 35.1.7, pp.345–346

	Short Name: CA (its siglum)

	Slug: edinburgh-nls-ms-adv-3517-pp345346

	Locus: pp.345–346

Web APIs

See separate documentation of the public Web APIs to search and browse the editions.

Encoding of the texts

The XML encoding of the texts is an adaptation of TEI [https://tei-c.org/] semantic into XHTML format.
It can therefore be directly displayed
and edited in the web-based Text Editor of Archetype and rendered directly on the live
website with CSS styling. However although the mark-up is valid HTML, it is designed
to map unambiguously to TEI. It is possible to export any text into TEI by applying
an XSLT transform. The XHTML content is saved in the relational database for
long term storage alongside a plain text derivative for indexing and live searches.
This approach has been used in many projects based on the Archetype framework; it is web-friendly and integrates very well with the
rest of the rich editorial environment.

The texts can be downloaded in TEI format with the Web API.

See separate documentation of the few elements we have borrowed from TEI.This minimal TEI schema is also available in ODD format.

In our TEI export we have used a seg (type=”unsettled”) for the
unsettled regions and the critical apparatus elements to express the
alternative readings at the Version and Work levels.

System Architecture

UML Deployment diagram:

[image: _images/ctrs-deployment-diagram.png]UML Deployment Diagram

The web application was developed using two python 3 web frameworks:

	Django [https://www.djangoproject.com/]

	Wagtail Content Management System [https://wagtail.io/]

We have used the Django Cookie Cutter [https://github.com/cookiecutter/cookiecutter]
stack, which is deployed with Docker [https://www.docker.com/] and comes with postgresql for the relational database,
nginx as a web server for the media assets, gunicorn to run the Python application and Traefik as a reverse proxy.

The source code of the Django project [https://github.com/kingsdigitallab/cotr/tree/master/cotr]
itself is open source and included in this COTR repository [https://github.com/kingsdigitallab/cotr].

The search page [https://cotr.ac.uk/search/] and the text viewer [https://cotr.ac.uk/viewer?group=declaration&blocks=23:transcription%3B]
on the public website are implemented by the ctrs_text Django app [https://github.com/kingsdigitallab/cotr/tree/master/cotr/ctrs_texts].

Each node (grey box) in the above diagram is a separate Docker container.
See the docker-compose file [https://github.com/kingsdigitallab/cotr/blob/master/kdl_liv.yml]
for the specification details.

Setup

Settings

See detailed cookiecutter-django settings
documentation [http://cookiecutter-django-kingsdigitallab.readthedocs.io/en/latest/settings.html].

Development

Local with Docker

See detailed cookiecutter-django development with Docker
documentation [https://cookiecutter-django-kingsdigitallab.readthedocs.io/en/latest/developing-locally-docker.html].

Local without Docker

See detailed cookiecutter-django local development
documentation [https://cookiecutter-django-kingsdigitallab.readthedocs.io/en/latest/developing-locally.html].

Basic Commands

Setting Up Your Users

	To create a normal user account, just go to Sign Up and fill out
the form. Once you submit it, you’ll see a “Verify Your E-mail
Address” page. Go to your console to see a simulated email
verification message. Copy the link into your browser. Now the
user’s email should be verified and ready to go.

	To create an superuser account, use this command:

$ python manage.py createsuperuser

For convenience, you can keep your normal user logged in on Chrome and
your superuser logged in on Firefox (or similar), so that you can see
how the site behaves for both kinds of users.

Type checks

Running type checks with mypy:

$ mypy cotr

Test coverage

To run the tests, check your test coverage, and generate an HTML
coverage report:

$ coverage run -m pytest
$ coverage html
$ open htmlcov/index.html

Running tests with py.test

$ pytest

Live reloading and Sass CSS compilation

Moved to Live reloading and SASS
compilation [http://cookiecutter-django-kingsdigitallab.readthedocs.io/en/latest/live-reloading-and-sass-compilation.html].

Deployment

The following details how to deploy this application.

Docker

See detailed cookiecutter-django Docker
documentation [http://cookiecutter-django-kingsdigitallab.readthedocs.io/en/latest/deployment-with-docker.html].

Migrating from Vagrant

	Create and start the containers

./bake.py up --build

	Get a database dump, and store it in .volumes/local_postgres_data_backups

pg_dump -O -E utf-8 -U app_ctrs -f ~/stg.sql -h db-stg.ctrs.cch.kcl.ac.uk app_ctrs_stg

	Compress the dump file with gzip

gzip stg.sql

	Connect to the postgres container

./bake.py -s postgres exec bash

	Check if the database is running

ps -ef | grep cotr

	If there are processes running stop them

kill ID1 ...

	Restore the database using the database dump file

cd /backups
restore stg.sql.gz

	Exit the container

exit

	Run the migrations

./bake.py manage migrate

	Load Archetype content [https://app.activecollab.com/148987/projects/759/notes?modal=Note-7240-759-0]

./bake.py manage ctrstxt import path_to/arch-content.json

	Create a superuser (LDAP is not enabled in local development, only in production)

./bake.py manage createsuperuser

	Install Node packages

npm install

	Browse to http://localhost:8000/

	Before commiting changes, install the pre-commit [https://pre-commit.com] hooks. After installing pre-commit run:

pre-commit install

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_images/ctrs-deployment-diagram.png
[Public Web Application (Docker Compose)

“Lond Batancers>

+Traefik

<slise>>

“Dosker Data Volume>
Media Volume

ot Sauroe>
Diango Project

<Docker Data Volume
Editions & Web content
Database

_images/ctrs-use-case-diagram.png
Archetype with custom editor & review system Public website

_images/ctrs-class-diagram.png
NamedModel
+ Name - string
+ Short Name * string
+ Slug - string
[AbstractedTextType] EncodedTextType EncodedTextStatus|
+ abstraction level 0.1 +edited in 0.1 +reviewed as'[0.1
AbstractedText EncodedText
+ Locus - string__ | + ediion of | + Content - string |
+grouped into ST -
o1

+manifestedin 0.1

+Ciy - stiing

+archived in

+ Shelfmark

0.1 -

